Functional integration of a serotonergic neuron in the Drosophila antennal lobe
نویسندگان
چکیده
Serotonin plays a critical role in regulating many behaviors that rely on olfaction and recently there has been great effort in determining how this molecule functions in vivo. However, it remains unknown how serotonergic neurons that innervate the first olfactory relay respond to odor stimulation and how they integrate synaptically into local circuits. We examined the sole pair of serotonergic neurons that innervates the Drosophila antennal lobe (the first olfactory relay) to characterize their physiology, connectivity, and contribution to pheromone processing. We report that nearly all odors inhibit these cells, likely through connections made reciprocally within the antennal lobe. Pharmacological and immunohistochemical analyses reveal that these neurons likely release acetylcholine in addition to serotonin and that exogenous and endogenous serotonin have opposing effects on olfactory responses. Finally, we show that activation of the entire serotonergic network, as opposed to only activation of those fibers innervating the antennal lobe, may be required for persistent serotonergic modulation of pheromone responses in the antennal lobe.
منابع مشابه
Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the nu...
متن کاملSensory Neuron-Derived Eph Regulates Glomerular Arbors and Modulatory Function of a Central Serotonergic Neuron
Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffus...
متن کاملA Neuronal Network Model of Drosophila Antennal Lobe by
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Droso...
متن کاملFunctional Connectivity and Selective Odor Responses of Excitatory Local Interneurons in Drosophila Antennal Lobe
Local interneurons in the Drosophila antennal lobe are thought to play important roles in shaping odor responses. However, the physiological properties of excitatory local interneurons (eLNs) and their connectivity in the antennal lobe remain unclear. We first characterized the firing patterns of krasavietz-Gal4-labeled eLNs (krasavietz eLNs) in response to depolarizing currents. Paired recordi...
متن کاملThe Broader, the Better? Drosophila Olfactory Interneurons Are Found to Respond to a Wider Range of Odorants Than Their Immediate Sensory Input
The Drosophila antennal lobe represents the first processing stage for olfactory information. In contrast to previous views, Olsen et al. (this issue of Neuron) demonstrate that antennal lobe output neurons show a broadened odor-tuning spectrum as compared to their sensory input. Likely candidates responsible for this broadening of odor tuning are recently identified excitatory local interneuro...
متن کامل